How we approach dangerous organizations and individuals.
How we support communities in the face of the opioid epidemic.
How we help prevent interference, empower people to vote and more.
How we work with independent fact-checkers, and more, to identify and take action on misinformation.
How we assess content for newsworthiness.
How we reduce problematic content in News Feed.
How we build AI systems.
Comprehensive access to public data from Facebook and Instagram
Comprehensive and searchable database of all ads currently running across Meta technologies
Additional tools for in-depth research on Meta technologies and programs
Quarterly report on how well we're doing at enforcing our policies on the Facebook app and Instagram.
Report on how well we're helping people protect their intellectual property.
Report on government request for people's data.
Report on when we restrict content that's reported to us as violating local law.
Report on intentional internet restrictions that limit people's ability to access the internet.
Quarterly report on what people see on Facebook, including the content that receives the widest distribution during the quarter.
Download current and past regulatory reports for Facebook and Instagram.
JAN 19, 2022
Whether potentially violating content is reported by people or detected by Meta’s technology, automation helps us quickly route the content to reviewers who have the right subject matter and language expertise.
We then use technology to rank and prioritize content so our review teams can focus on the most important cases first. This includes content with the potential for offline harm, such as posts related to terrorism and suicide, and viral content that violates our policies and has the potential to reach a large audience.
To make sure review teams spend more time focused on the right decisions, we’re always making improvements to our technology and processes.
How Meta prioritizes content for reviewTo reduce harm in our community, our technology and human review teams are always working together. Here are some ways reviewers, in tandem with technology, help strengthen our entire content enforcement system.
When reviewers make a decision about a piece of content, they’re simultaneously training and refining our technology to help it identify other pieces of similar content over time. This human-technology feedback loop is vital to keeping our systems current.
When reviewing violating content, review teams manually label the policy guiding their decision, which means they mark the policy that the content, account or behavior violates. This important labeling data helps us improve the quality of our artificial intelligence algorithms that proactively search for harmful content.
Our technology does well in 2 areas in particular: detecting repeated violations and identifying obviously graphic or extreme content. But when there’s a high degree of ambiguity, complexity or nuance in whether our policies apply to a piece of content, reviewers tend to make better decisions than technology.